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66 SCOTT 

1. INTRODUCTION 

Electric f i e l d s  have been used in a p p l i c a t i o n s  r e l a t e d  t o  

s o l v e n t  e x t r a c t i o n  f o r  n e a r l y  seventy years ,  p r i m a r i l y  t o  break 

aqueous-in-organic emulsions. It was not  u n t i l  about twenty years  

ago t h a t  t h e  use of e l e c t r i c  f i e l d s  was contemplated as a means of 

d r i v i n g  and c o n t r o l l i n g  e x t r a c t i o n  processes .  The i n i t i a l  i d e a s  

revolved around d r o p l e t  formation from charged nozzles  and have 

l e d  t o  development of s e v e r a l  des igns  f o r  cont inuous c o n t a c t i n g  

devices .  Electric f i e l d  dr iven  devices  are not used to  any 

s i g n i f i c a n t  e x t e n t  in i n d u s t r y ,  but recent  r e s u l t s  in t h i s  a r e a ,  

some of which a r e  descr ibed  in t h i s  paper ,  suggest  t h a t  t h i s  tech-  

n ique  may produce systems t h a t  a r e  an o r d e r  of magnitude more 

e f f e c t i v e  than  present  day machines. 

The purpose of t h i s  paper then  is t o  inform t h e  s e p a r a t i o n  

s c i e n c e  community of t h i s  a l t e r n a t i v e  approach t o  o p e r a t i n g  s o l v e n t  

e x t r a c t i o n  processes .  In order  t o  understand t h e  underlying 

p r i n c i p l e s  of opera t ion ,  t h e  second s e c t i o n  d e s c r i b e s  t h e  i n t e r -  

a c t i o n s  of e l e c t r i c  f i e l d s  with l i q u i d s  while  t h e  t h i r d  d i s c u s s e s  

important  phenomena r e l a t e d  t o  d r o p l e t  behavior  in e l e c t r i c  

f i e l d s .  Sec t ions  f o u r  and f i v e  present  e lec t r ic  f i e l d  e f f e c t s  as 

they  are manifested in t h e  s e v e r a l  s t e p s  t h a t  comprise e x t r a c t i o n  

and g ive  some i d e a  as t o  t h e  s ta te  of t h e  r e s e a r c h  a r e a  and 

f u t u r e  d i r e c t i o n s  which may lead  t o  i n t e r e s t i n g  d i s c o v e r i e s .  

2. ELECTRICAL FORCE EFFECTS ON FLUIDS 

In c o n t r a s t  t o  e lec t rochemica l  a p p l i c a t i o n s ,  t h e  use of 

e lectr ic  f i e l d s  t o  c o n t r o l  s o l v e n t  e x t r a c t i o n  processes  involves  
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USE OF ELECTRIC FIELDS I N  SOLVENT EXTRACTION 67 

p r i m a r i l y  p h y s i c a l  i n t e r a c t i o n s  between charges,  f i e l d s  and con- 

d u c t i n g  and/or  d i e l e c t r i c  l i q u i d s .  The i n t e r a c t i o n s  of e l e c t r i c  

f i e l d s  with f l u i d s  a r e  t h e  s u b j e c t  of a branch of f l u i d  mechanics 

c a l l e d  electrohydrodynamics. Although t h i s  a r e a  of research  

encompasses both l i q u i d - l i q u i d  and gas- l iqu id  systems,  we w i l l  

r e s t r i c t  ourse lves  t o  t h e  d i s c u s s i o n  of mult iphase l i q u i d  systems 

- a combination which is c h a r a c t e r i s t i c  of so lvent  e x t r a c t i o n  

opera t ions .  F i r s t ,  one must understand t h e  e f f e c t  of an e l e c t r i c  

f i e l d  and a volumetr ic  charge d e n s i t y  upon a s i n g l e  s tagnant  

f l u i d .  Once t h e s e  fundamental r e l a t i o n s h i p s  are in place  one can 

then  proceed t o  determine what happens t o  e l e c t r i c  f i e l d  and 

charge e f f e c t s  a t  a d i s c o n t i n u i t y  of e l e c t r i c a l  p r o p e r t i e s  - an 

i n t e r f a c e .  General ly  speaking,  t h e s e  i n t e r f a c i a l  e f f e c t s  manifest  

themselves as a r e s u l t a n t  f o r c e  or  s h e a r  stress t h a t  can induce 

a s t a t i c  deformation of t h e  i n t e r f a c e  and even s t e a d y  o r  t r a n s i e n t  

f l u i d  motion. It is t h e  understanding t h e  n a t u r e  of t h e  e l e c t r i c -  

f ie ld- induced  f o r c e s  t h a t  arise a t  l i q u i d - l i q u i d  i n t e r f a c e s  which 

forms t h e  b a s i s  f o r  e x p l o r a t i o n  of p o s s i b l e  a p p l i c a t i o n  of 

e l e c t r i c  f i e l d s  in so lvent  e x t r a c t i o n  systems. 

2.1 Governing Mathematical R e l a t i o n s h i p s  

In 1864, Maxwell descr ibed  how Ampere's l a w  of f o r c e  between 

moving charges o r  c u r r e n t s  and Faraday 's  law of i n d u c t i o n  can be 

transfo'rmed i n t o  f i e l d  equat ions. '  

need f o r  t h e  e x i s t e n c e  of a displacement  c u r r e n t  i n  Ampere's l a w  

in order  t o  s a t i s f y  conserva t ion  of charge in a system. 

t rea tment  r e s u l t e d  in a set of f o u r  e q u a t i o n s ,  known as "Maxwell 

In a d d i t i o n ,  he p o s t u l a t e d  t h e  

H i s  
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68 SCOTT 

TABLE I: DIFFERENTIAL FORMS OF MAXWELL EQUATIONS AND APPROPRIATE 
BOUNDARYfINTERFACIAL CONDITIONS UTILIZED I N  ELECTRO- 
HYDRODYNAMICS 

D i f f e r e n t i a l  Laws Boundaryf In te r fac ia l  Condi t ions 

Faraday 's  Law Cont inui ty  of Tangent ia l  E l e c t r i c  
F i e l d  

v XE = g  (1) - n x (EA - EB) = 2 ( 5 )  

Gauss ' Law Change i n  Normal Electric 
Displacement 

(6) 

Charge Conservation Equation Boundary Condit ion f o r  Current  

A B  
'E ( 2 )  (1 - g ' y o E  

v . g -  

A B B E l e c t r i c  Displacement - - r c J A  - PE 1) - (2 - PE 111 1. 
E l e c t r i c  F i e l d  Rela t ionship  

- D = E & + P  (4) - vs (4 - a& 

equat ions  , I '  which are t h e  s t a r t i n g  p o i n t  of a l l  t h e o r e t i c a l  

ana lyses  involv ing  e lec t romagnet ic  f i e l d s .  2 

When f l u i d  v e l o c i t i e s  are s u f f i c i e n t l y  low such that dynamic 

c u r r e n t s  are very small, magnetic induct ion  can be ignored and t h e  

e l e c t r o s t a t i c  form of t h e  Maxwell equat ions  may be u t i l i z e d  as 

shown i n  Table I . 3  s4 

A f e a t u r e  important  t o  t h e  a n a l y s i s  of e lectrohydrodynamic a p p l i -  

c a t i o n s  is t h e  i r r o t a t i o n a l  n a t u r e  of t h e  e lectr ic  f i e l d  i n t e n s i t y ,  

-2 E as shown i n  Equation 1 (Faraday's law). Gauss' l a w ,  Equation 2, 

relates t h e  f r e e  charge d e n s i t y  pE t o  t h e  electric displacement ,  
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USE OF ELECTRIC FIELDS I N  SOLVENT EXTRACTION 69 

- D, while Equation 3 is simply t h e  charge conserva t ion  equat ion  

which takes  i n t o  account t h e  f r e e  c u r r e n t  d e n s i t y ,  J. The 

r e l a t i o n s h i p  between t h e  e lectr ic  displacement and t h e  e lectr ic  

f i e l d  is shown i n  Equation 4, where t h e  p o l a r i z a t i o n ,  E, is t h e  

d i p o l e  moment per u n i t  volume. Hence, t h e  e l e c t r i c a l  d i sp lace-  

ment takes  i n t o  account t h e  "background electric f i e l d "  as w e l l  as 

e l e c t r i c  f i e l d  c o n t r i b u t i o n s  from induced p o l a r i z a t i o n  of t h e  

media. The d i f f e r e n t i a l  l a w s  d i sp layed  i n  Table I have analogous 

i n t e g r a l  forms which provide t h e  s t a r t i n g  p o i n t s  f o r  d e r i v a t i o n  of 

t h e  boundary and the  i n t e r f a c i a l  condi t ions  t h a t  p e r t a i n  t o  t h e  

e lec t r ic  f i e l d ,  5, electr ic  displacement ,  D, and c u r r e n t  d e n s i t y ,  

- J (Equations 5-7, r e s p e c t i v e l y ) .  

The d i f f e r e n t i a l  equat ions  represented  i n  Table  I can be 

w r i t t e n  i n  terms of the  a s s o c i a t e d  f i e l d s  through t h e  use of 

c o n s t i t u t i v e  r e l a t i o n s h i p s  f o r  e lectr ic  displacement ,  1, and 

c u r r e n t  d e n s i t y ,  J: 

- D = E E ,  (8) 

J = y E J  (9)  

where t and y are t h e  p e r m i t t i v i t y  and conduct iv i ty ,  r e s p e c t i v e l y .  

Upon comparison of Equations 4 and 8, it is evident  t h a t  t h e  

p e r m i t t i v i t y  can be thought of as a measure of t h e  p o l a r i z a b i l i t y  

of a material. I n  t h e  p o l a r i z a t i o n  r e l a t i o n s h i p ,  Equat ion 8, the 

value of the  p e r m i t t i v i t y  is g e n e r a l l y  considered to  be a f u n c t i o n  

of e lectr ic  f i e l d  s t r e n g t h  and f l u i d  dens i ty .  Equat ion 9, Ohm's 

law, concerns t h e  e l e c t r i c a l  conduct ion process  i n  a s tagnant  

l i q u i d .  For t h e  case of f l u i d  i n  motion, t h e  t o t a l  c u r r e n t  den- 

s i t y  measured from 
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70 SCOTT 

a s t a t i o n a r y  frame of re ference  is given by 

J - YE + PE19  

where is t h e  v e l o c i t y  v e c t o r  of t h e  f l u i d .  

(10) 

2.2 Behavior of Electrical  Charges i n  Liquids  

Examination of t h e  c o n t i n u i t y  of charge r e l a t i o n s h i p  

(Equat ion 3) i n  l i g h t  of t h e  c o n s t i t u t i v e  r e l a t i o n s h i p s  shown i n  

Equat ions 8 and 9 r e v e a l s  t h a t  t h e  t i m e  rate of change of charge 

d e n s i t y ,  p , observed when one is convect ing wi th  t h e  f l u i d  is 

g iven  by 

E 

Assuming t h e  l i q u i d  t o  be incompressible ,  V.1 = 0, and t h a t  y and 

E remain cons tan t ,  Equation 11 can be i n t e g r a t e d  t o  y i e l d  

, (12) 
- t / T e  

'E 'E,Oe 

where T t h e  r e l a x a t i o n  time c o n s t a n t ,  is def ined  as t h e  ra t io  of 

t h e  p e r m i t t i v i t y  to  t h e  conduct iv i ty ,  ~ / y . ~ * ~  

a q u a l i t a t i v e  i n d i c a t i o n  of t h e  propens i ty  of a material t o  r e t a i n  

a charge d i s t r i b u t i o n  versus  a l lowing charge t r a n s p o r t  t o  occur. 

I n  t h i s  case t h e  bulk charge d e n s i t y  d i s p l a y s  an exponent ia l  decay 

from t h e  i n i t i a l  va lue  , pE,o ,  wi th  a c h a r a c t e r i s t i c  t i m e  c o n s t a n t ,  

T . I n  a d d i t i o n ,  because t h e  d e s c r i p t i o n  involves  motion 

fo l lowing  along with t h e  f l u i d ,  t h i s  r e s u l t  impl ies  t h a t  a g iven  

element of l i q u i d  w i l l  not c o n t a i n  any charge u n l e s s  i ts  stream- 

l i n e  can be t r a c e d  back to  a source  of charge. 

e' 
This  r a t i o  y i e l d s  

3 

Evaluat ion of t h e  behavior  of t h e  decay of bulk charge den- 

s i t y  y i e l d s  i n s i g h t  i n t o  t h e  behavior  of e lec t r ic  f i e l d s  i n  f l u i d s .  
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USE OF ELECTRIC FIELDS I N  SOLVENT EXTRACTION 7 1  

A p e r f e c t  conductor would have a r e l a x a t i o n  t i m e  t h a t  approaches 

zero ;  hence, t h e  bulk charge d e n s i t y  would i n s t a n t a n e o u s l y  decay 

t o  zero. On t h e  o t h e r  hand, a p e r f e c t  i n s u l a t o r  would have a T e 

which approaches i n f i n i t y  and t h e r e f o r e  t h e  bulk charge d e n s i t y  

does not decay a t  a l l .  The r e l a x a t i o n  time i n  seawater is 

2 x 10-l' 

d i s t i l l e d  water  is approximately 1 x It is evident  t h a t  i n  

a l l  but t h e  very poores t  of l i q u i d  conductors  t h e  r e l a x a t i o n  t i m e  

is extremely small. For comparison, fused  q u a r t z  (a good 

seconds (conduct ing)  while  t h e  corresponding va lue  i n  

e l e c t r i c a l  i n s u l a t o r )  has  a value of about a m i l l i o n  f o r  ie.' 

a n a l y s i s  i n  Equations 11 and 12 br ings  t o  l i g h t  an extremely 

important  concept which is u s e f u l  i n  l i q u i d  phase a p p l i c a t i o n s .  

Charges t h a t  are i n i t i a l l y  i n  t h e  i n t e r i o r  of most l i q u i d s  (except  

f o r  exceedingly poor conductors)  w i l l  i n  genera l  q u i c k l y  move 

through t h e  l i q u i d  and seek out  an area where t h e r e  is a discon- 

t i n u i t y  of e l e c t r i c  c o n d u c t i v i t y  and p e r m i t t i v i t y  - an i n t e r f a c e .  

I n  so lvent  e x t r a c t i o n  t h i s  is g e n e r a l l y  a l i q u i d - l i q u i d  i n t e r f a c e ;  

The 

however, i n  real systems one a l s o  encounters  s o l i d - l i q u i d ,  s o l i d -  

g a s ,  and gas- l iqu id ,  i n t e r f a c e s  a s s o c i a t e d  with t h e  phys ica l  

equipment. 

2.3 E f f e c t s  of Electric F i e l d s  on Hydrodynamics 

The previous t rea tment  i l l u s t r a t e s  t h a t ,  i n  g e n e r a l ,  e lec t r ic  

f i e l d  and charge phenomena i n  mult iphase l i q u i d  systems demonstrate  

t h e  g r e a t e s t  e f f e c t  a t  i n t e r f a c e s .  Let  us  now examine t h e  con- 

t r i b u t i o n  which e lectr ic  f i e l d  f o r c e s  make t o  t h e  o v e r a l l  hydro- 

dynamical d e s c r i p t i o n  of t h e  f l u i d s .  The motion of f l u i d s  under 
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12 SCOTT 

t h e  i n f l u e n c e  of an appl ied  e lectr ic  f i e l d  is  governed by t h e  

u s u a l  p r i n c i p l e s  of conserva t ion  of l i n e a r  momentum and of mass. 

For incompressible  f l u i d s ,  t h e  equat ions  of motion and of 

c o n t i n u i t y  are given by 

and 

0 . 1  = o ,  

r e s p e c t i v e l y ,  where p i e  t h e  f l u i d  d e n s i t y ,  g is t h e  g r a v i t a t i o n a l  

f o r c e  per  u n i t  mass, Dv_/Dt is  t h e  s u b s t a n t i a l  d e r i v a t i v e  of t h e  

v e l o c i t y  with respec t  t o  t i m e ,  and 2 i s  t h e  stress t e n ~ o r . ~  

i n t e r f a c e  between two f l u i d s  A and B, conserva t ion  of momentum 

r e q u i r e s  t h a t  

A t  an - 

n (f - - TB) + 2 H u ~  = 0, 

where E is a u n i t  normal to t h e  i n t e r f a c e ,  2H is t h e  l o c a l  mean 

curva ture ,  and u i s  t h e  i n t e r f a c i a l  t e n s i o n  which f o r  most 

a p p l i c a t i o n s  of i n t e r e s t  in t h i s  paper w i l l  be assumed constant. ' , '  

(15) - -  - 

The stress can be considered t o  be t h e  sum of two p a r t s :  one 

an equi l ibr ium e n t i t y  and t h e  o t h e r  dynamic i n  na ture .  The de- 

composition is r e l a t i v e l y  a r b i t r a r y 3  9 ' '  ; however, t h e  genera l  

n o t i o n  is  t h a t  t h e  l o c a l  s ta te  of stress is  given by an express ion  

such as 

T - T (p,T,E) + T (1; r l ) ,  (16) =eq N - - 

where T (p,T,E) is  t h e  c o n t r i b u t i o n  a t  mechanical and thermo- 

dynamic equi l ibr ium i n  an e x t e r n a l l y  imposed e lectr ic  f i e l d  and 
=q 
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USE OF ELECTRIC FIELDS I N  SOLVENT EXTRACTION 73 

T (1; q) is  t h e  viscous stress tensor .  In t h e  case of 

h y d r o s t a t i c  equi l ibr ium,  t h e  momentum equat ion  (13)  reduces t o  

=v 

v (Po - PSI + Pg = 0, (17) 

where p - p(p,T,O) is t h e  zero  f i e l d  p r e s s u r e  and p is  t h e  

e l e c t r o s t r i c t i v e  pressure .  This  r e l a t i o n s h i p  holds  whenever 

e i t h e r  t h e  flow f i e l d  is i so thermal  or t h e  p o l a r i z a t i o n ,  1, is 

independent of temperature  and when t h e  f r e e  charge d e n s i t y ,  p 

is  everywhere zero. 

0 

E' 

As an example, one can explore  t h e  case of a l i q u i d  t h a t  is 

highly  conducting with r e s p e c t  t o  another  l i q u i d  wi th  which it  is 

in contac t .  The e l e c t r i c  f i e l d  vanishes  i n s i d e  t h e  conductor ;  

hence,  only t h e  normal component of t h e  e lectr ic  f i e l d  on t h e  

i n s u l a t o r  s i d e  of the  i n t e r f a c e  w i l l  be of importance. The 

boundary condi t ion  a t  t h e  i n t e r f a c e  ( s e e  Equat ion 15) takes  on t h e  

fo l lowing  form 

(18) 2 -2Hu = Ap + 1/2~,E, , 

where Ap is  thermodynamic p r e s s u r e  on t h e  conductor s i d e  minus 

t h a t  on t h e  i n s u l a t o r  s i d e  of t h e  i n t e r f a c e ,  and En is t h e  normal 

component of t h e  e l e c t r i c  f i e l d  on t h e  i n s u l a t o r  s i d e .  To 

c a l c u l a t e  t h e  shape of t h e  i n t e r f a c e ,  Ap is e l imina ted  from 

Equat ion 18 v i a  i n t e g r a t i o n  of Equat ion 17. The r e s u l t  is t h e  

augmented Young-Laplace equat ion  f o r  an e q u i l i b r i u m  meniscus 

shape. This  r e s u l t  i n d i c a t e s  t h a t  impos i t ion  of a s u f f i c i e n t l y  

i n t e n s e  e l e c t r i c  f i e l d  on t h e  system may overcome "sur face  f o r c e s "  

( i n t e r f a c i a l  t e n s i o n )  and cause deformation of t h e  i n t e r f a c e .  

The c a s e  f o r  f l u i d s  in motion i s  s i g n i f i c a n t l y  more complex. 

If t h e  l i q u i d s  are ohmic conductors  wi th  cons tan t  c o n d u c t i v i t i e s ,  
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are l i n e a r ,  i s o t r o p i c  d i e l e c t r i c s  wi th  cons tan t  p e r m i t t i v i t i e s ,  

and are incompressible ,  t h e  t o t a l  stress t e n s o r  2 t a k e s  on a 

reasonable  form which al lows i n v e s t i g a t i o n  of Equat ion 15. A t  t h e  

i n t e r f a c e  between two such l i q u i d s ,  

- 

(19)  
( S A  - T B, - u E 

E t ,  
Te -c: =e 

where 2 is a u n i t  normal and t is u n i t  t angent  t o  t h e  i n t e r f a c e .  

The most i n t e r e s t i n g  aspec t  of Equation 19 is t h a t  whenever an 

i n t e r f a c e  s imultaneously suppor ts  a t a n g e n t i a l  e l e c t r i c  f i e l d  (E ) 

and a s u r f a c e  charge d e n s i t y  (uE) an e l e c t r i c  s h e a r  stress (T ) acts 

upon it.' The na ture  of f l u i d s  is such t h a t  a mechanical 

equi l ibr ium cannot be maintained under t h e  a c t i o n  of a s h e a r  

s t r e s s ;  hence, t h e  r e s u l t  of t h e  e lectr ic  f i e l d  c o n t r i b u t i o n  is t o  

t 

induce f l u i d  motion i n  t h e  system. 

3. BEHAVIOR OF L I Q U I D  DROPLETS IN ELECTRIC FIELDS 

I n t e r a c t i o n  of drops and bubbles with e lec t r ic  f i e l d s  is 

p r e v a l e n t  i n  na ture  and is  important  i n  many technologica l  

 application^.^ 
areas a s  c o l l o i d a l  systems, meteorology and cloud phys ics ,  

e l e c t r o s t a t i c  spraying  of l i q u i d s ,  power engineer ing  a p p l i c a t i o n s ,  

n u c l e a r  phys ics ,  a e r o s o l  s c i e n c e ,  and many o t h e r s .  

behavior  which l i n k s  these  seemingly u n r e l a t e d  s i t u a t i o n s  t o g e t h e r  

i s  t h e  physics  d e s c r i b i n g  d r o p l e t  formation,  s t a b i l i t y ,  

o s c i l l a t i o n ,  breakup, and coalescence.  To understand t h e  e f f e c t s  

of e lectr ic  f i e l d s  upon s o l v e n t  e x t r a c t i o n  processes ,  one must 

s tudy  t h e s e  same types  of e f f e c t s  f o r  e lectr ic  f i e l d  i n t e r a c t i o n s  

with l i q u i d  d r o p l e t s .  

S imi la r  s i t u a t i o n s  can be found i n  such d i v e r s e  

10-15 The 
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USE OF ELECTRIC FIELDS IN SOLVENT EXTRACTION 75 

FIGURE 1 
Droplet-Continuum System Characteristic 

of Solvent Extraction. 

Contact of droplets of a dispersed liquid phase with a 

surrounding continuous liquid phase represents a basic interaction 

in liquid-liquid solvent extraction. Figure 1 is a schematic 

diagram representing this "basic building block" which characterizes 

the mass transfer behavior in extraction. In terms of the 
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droplet-continuum system, mass t r a n s f e r  rates from one l i q u i d  

phase t o  another  depend upon the  physicochemical p rope r t i e s  of the  

t r a n s f e r r i n g  spec ies  and so lvents  as  w e l l  a s  on the  hydrodynamic 

state of the  system. Although the re  a re  cases  i n  which e lec t r ic  

f i e l d  and charge e f f e c t s  may a f f e c t  the  physicochemical p rope r t i e s  

of the  components, t he  i n t e r a c t i o n s  with l iqu id- l iqu id  systems 

genera l ly  manifest themselves as  changes i n  the  hydrodynamics. 

The most important e f f e c t s  w i l l  be discussed i n  terms of the  

following types of i n t e rac t ions :  d rople t  t r a n s l a t i o n ,  deformation, 

s t a b i l i t y ,  and o s c i l l a t i o n .  

The s i t u a t i o n  which is of most importance f o r  l iqu id- l iqu id  

e x t r a c t i o n  i s  tha t  of a conducting d rop le t  loca ted  i n  a ( r e l a t i v e l y )  

nonconducting continuous phase under the  inf luence  of an e l e c t r i c  

f i e l d .  For a f r e e  d rop le t ,  even when the  continuous phase is a 

"very good" i n s u l a t o r ,  the  minute amount of cur ren t  flow through 

the  continuum w i l l  cause a small amount of charge t o  be present  a t  

the  in te r face .16  

e l ec t rode ,  the  drople t  w i l l  ca r ry  a r e l a t i v e l y  high su r face  charge 

which approaches a l imi t ing  value determined by Rayleigh. 

I n  e i t h e r  case, e f f e c t s  of the  t angen t i a l  electric f i e l d  a t  the  

i n t e r f a c e  and the  su r face  charge d i s t r i b u t i o n  w i l l  genera l ly  be 

smal l  enough so as  not t o  induce s i g n i f i c a n t  f l u i d  motion i n  t h e  

system (see Equation 19). 

I n  the  case of d rop le t  formation a t  an 

17 

Given, then, t h a t  a l l  l i q u i d  d rop le t s  w i l l  acquire  a f i n i t e  

amount of charge, it is necessary t o  take  i n t o  account electric 

f ie ld-charge in t e rac t ions .  When a charged d rop le t  is placed i n  a 
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USE OF ELECTRIC FIELDS I N  SOLVENT EXTRACTION 77 

SLIGHTLY CHARGED WILL BECOME AND MOVE TOWARD 
DROPLET POLARIZED ELECTRODE O F  

IN THE FIELD OPPOSITE SIGN 

DEPENDENT UPON CONDITIONS 
T W O  DROPLETS M A Y  MOVE IN THE +IELD 

THIS I S  A POTENTIAL AID TO COALESCENCE. 
AND BE ATTRACTED TO EACH OTHER 

FIGURE 2 
P o l a r i z a t i o n  and T r a n s l a t i o n  of a Charged 

Droplet  i n  a Steady DC Field.  

s t e a d y  DC f i e l d ,  two important  phenomena occur: t h e  d r o p l e t  is 

p o l a r i z e d ,  and t h e  d r o p l e t  undergoes e l e c t r i c - f i e l d - i n d u c e d  

motion. F igure  2 d e p i c t s  t h e s e  two e f f e c t s  on a charged conduct ing 

d r o p l e t  l o c a t e d  i n  a s t e a d y  DC f i e l d .  P o l a r i z a t i o n  of t h e  charge 

may have e f f e c t s  upon drople t -drople t  i n t e r a c t i o n s  because 

o p p o s i t e l y  p o l a r i z e d  ends of s e p a r a t e  d r o p l e t s  may a t t r a c t  one 

another .  The e f f e c t  of t h e  net  charge i n  t h e  f i e l d  w i l l  be f o r  

t h e  d r o p l e t  t o  migrate  toward t h e  e l e c t r o d e  of o p p o s i t e  s i g n ;  
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+ 
SCOTT 

SPHERE 

(NO FIELD) 

PROLATE SPHEROID 

(FIELD ON) 

FIGURE 3 
Droplet  Deformation i n  a Strong Electr ic  F i e l d .  

hence, t h e  s teady  e lectr ic  f i e l d  induces d r o p l e t  motion i n  an 

o therwise  s tagnant  system. 

P lac ing  a s p h e r i c a l ,  conducting d r o p l e t  which is surrounded 

by a nonconducting continuum i n  a s t e a d y  DC electric f i e l d  w i l l  

cause s t r e s s e s  t o  develop on t h e  drople t .”  As t h e  s t r e n g t h  of 

t h e  f i e l d  is increased ,  t h e  d r o p l e t  w i l l  deform i n t o  an e l l i p s o i d  

whose major a x i s  lies p a r a l l e l  t o  t h e  e lectr ic  f i e l d  l i n e s  ( s e e  

F igure  3 ).19 Solving an a l t e r n a t e  v e r s i o n  of Equation 2 f o r  the 

e lec t r ic  f i e l d  v e c t o r ,  E, i n  conjunct ion  wi th  t h e  augmented 

Young-Laplace equat ion  enables  one t o  determine t h e  shape of t h e  

d r o p l e t .  , ’’ I f  suf f i c i e n t  f i e l d  s t r e n g t h  is provided,  t h e  
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USE OF ELECTRIC FIELDS I N  SOLVENT EXTRACTION 79  

(NECKING) (JETTING) 

FIGURE 4 
Droplet  D i s i n t e g r a t i o n  i n  Electric F i e l d s .  

d r o p l e t  deformation w i l l  become l a r g e  enough t o  overcome i n t e r -  

f a c i a l  t e n s i o n  and cause d i s i n t e g r a t i o n  of t h e  o r i g i n a l  d r o p l e t  

i n t o  a l a r g e  number of smaller daughter  d r o p l e t s .  

Dependent upon d r o p l e t  charge and e lec t r ic  c h a r a c t e r i s t i c s ,  

d i s i n t e g r a t i o n  can occur by necking i n  t h e  middle of t h e  e l l i p s o i d a l  

shape p r i o r  t o  break-up, o r  by cone formation and j e t t i n g  of smal l  

d r o p l e t s  from e i t h e r  end of the  d r o p l e t  as shown i n  F igure  4. 

1 6 , 2 0 , 2 1  

2 2  
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80 SCOTT 

When an AC or p u l s i n g  DC f i e l d  is used,  t h e  d r o p l e t  w i l l  

deform when t h e  f i e l d  is "on" and r e l a x  back toward t h e  s p h e r i c a l  

shape when t h e  f i e l d  is "off" thereby f o r c i n g  t h e  d r o p l e t  t o  

o s c i l l a t e  about t h e  s p h e r i c a l  form. The d r o p l e t  undergoes 

deformation each time t h e  DC f i e l d  pulses  and two times per  c y c l e  

when using an AC f i e l d .  The main e f f e c t  of t h i s  type of a c t i v i t y  

is  t o  a l ter  t h e  v e l o c i t y  p r o f i l e s  wi th in  t h e  d r o p l e t  and around 

t h e  i n t e r f a c e  i n  t h e  continuous phase. This  a l t e r a t i o n  can, i n  

tu rn ,  a f f e c t  t h e  i n t e r f a c i a l  mass t r a n s f e r  rate of t h e  system. 

Trans ien t  f i e l d s  can a l s o  be used t o  cause d r o p l e t  d i s i n t e g r a t i o n ;  

however, t h e  f i e l d  s t r e n g t h  requi red  is higher  than when us ing  a 

s t e a d y  DC f i e l d . 2 4  

23 

A l i q u i d  d r o p l e t  immersed i n  a viscous continuous phase has  a 

" n a t u r a l  o s c i l l a t i o n  frequency" which is a complex f u n c t i o n  of t h e  

drop s i z e ,  phys ica l  p r o p e r t i e s  of t h e  two phases ,  and i n t e r f a c i a l  

t ens ion .25  

p u l s e  and allowed t o  d i s s i p a t e  t h e  energy of t h e  pulse ,  it w i l l  do 

so a t  t h i s  p r e f e r r e d  n a t u r a l  frequency. I f  t h e  d r o p l e t  is 

d i s t u r b e d  with a t r a n s i e n t  f i e l d  as descr ibed  above, t h e  ampli tude 

of t h e  d r o p l e t  o s c i l l a t i o n ,  while  holding t h e  e lectr ic  f i e l d  

s t r e n g t h  cons tan t ,  becomes a complex f u n c t i o n  of t h e  frequency of 

t h e  electric f i e l d .  F igure  5 is a schematic  r e p r e s e n t a t i o n  of 

t h i s  type of behavior. The ampli tude r a t i o  of t h e  d is turbance  

goes through a l o c a l  maximum a t  the n a t u r a l  frequency as calcu- 

l a t e d  by Miller and Scr iven  and then  i n c r e a s e s  t o  a va lue  

approaching t h e  i n t e r a c t i o n  with a s t e a d y  DC f i e l d . 2 5  

If a d r o p l e t  is deformed with a s i n g l e  d i s t u r b i n g  

For a 
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a2 SCOTT 

given  l i q u i d - l i q u i d  system, t h e  n a t u r a l  o s c i l l a t i o n  behavior  is 

e s s e n t i a l l y  only a f u n c t i o n  of d r o p l e t  s i z e ;  t h e r e f o r e ,  varying 

t h e  frequency of an e lectr ic  f i e l d  w i l l  p r e f e r e n t i a l l y  a f f e c t  

s p e c i f i c  d r o p l e t  s i z e s .  24 

4. SYSTEMATIC CONSIDERATIONS 

Having l a i d  t h e  groundwork wi th  our d i s c u s s i o n  of t h e  i n t e r -  

a c t i o n s  of f l u i d s  and d r o p l e t s  wi th  e lectr ic  f i e l d s ,  w e  may now 

proceed t o  examine how t h e s e  phenomena become important  i n  

a l t e r i n g  t h e  performance of l i q u i d - l i q u i d  s o l v e n t  e x t r a c t i o n  

systems. It is convenient t o  examine e x t r a c t i o n  "componentwise" 

i n  terms of t h e  s e v e r a l  types  of opera t ions  involved i n  n e a r l y  

every  e x t r a c t i o n  process .  These common f e a t u r e s  are s u r f a c e  area 

( d r o p l e t )  formation,  f r e e  droplet-continuum i n t e r a c t i o n s ,  and 

coalescence and phase separa t ion .  

d e p i c t i n g  these  important  common elements. 

F igure  6 is a schematic  diagram 

4 . 1  Droplet Formation 

Formation of i n t e r f a c i a l  s u r f a c e  area f o r  mass t r a n s f e r  may 

be considered as t h e  f i r s t  s t e p  i n  an e x t r a c t i o n  process .  I n  

p r a c t i c e ,  i n t e r f a c i a l  area or d r o p l e t s  are u s u a l l y  c r e a t e d  by a 

form of mechanical manipulation. 

such forms as e x t r u s i o n  through s i e v e  p l a t e s ,  use of i m p e l l e r s  i n  

b a f f l e d  tanks ,  forced  countercur ren t  flow through s t a t i c  packing,  

o r  combinations thereof  .26-28 As var ied  as t h e s e  o p e r a t i o n s  may 

appear ,  they a l l  s h a r e  a requirement f o r  an energy input  i n t o  t h e  

bulk of each of t h e  l i q u i d s  t o  create a d i s p e r s e d  phase with a 

This  genera l  approach may t a k e  
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/DROP FORMATION 

/ FREE DROPLET- 
CONTINUUM 

INTERACTIONS 

--COALESCENCE 

FIGURE 6 
Common Fea tures  Important t o  Solvent  E x t r a c t i o n  Processing.  

reasonable  amount of s u r f a c e  a rea .  This  r e p r e s e n t s  a p o s s i b l y  

i n e f f i c i e n t  use of energy because t h e  cont inuous phase must be 

manipulated t o  create t h e  d e s i r e d  e f f e c t  on t h e  d i s p e r s e d  phase. 

E l e c t r i c  f i e l d  techniques have been i n v e s t i g a t e d  f o r  use i n  

d r o p l e t  formation from charged nozzles  or orifices and t o  a lesser 

e x t e n t  f o r  s u r f a c e  area c r e a t i o n  v i a  e m u l s i f i c a t i o n ,  I n  drop 

formation s t u d i e s ,  t h e  s i z e  of t h e  drop is determined by t h e  
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balance of g r a v i t a t i o n a l ,  s u r f a c e  t e n s i o n ,  and e l e c t r o s t a t i c  

forces .29  

d i f f e r e n c e  of t h e  two f l u i d s  and t h e  d r o p l e t  volume. The s u r f a c e  

f o r c e  depends t h e  i n t e r f a c i a l  t e n s i o n  and t h e  diameter  of t h e  

o r i f i c e  through which t h e  d r o p l e t  is formed. I f  t h e  e l e c t r o s t a t i c  

f o r c e  acts i n  t h e  same d i r e c t i o n  as t h e  g r a v i t a t i o n a l  f o r c e  t h e  

r e s u l t  is t h e  formation of d r o p l e t s  with a reduced volume. For 

t h e  same flow r a t e  of material through an o r i f i c e ,  t h e  e l e c t r i f i e d  

system produces a l a r g e r  number of d r o p l e t s  with reduced volume 

and consequent ly  more s u r f a c e  area per  u n i t  volume of d i s p e r s e d  

phase. 

The g r a v i t a t i o n a l  f o r c e  is dependent upon t h e  d e n s i t y  

Numerous s t u d i e s  have been undertaken t o  i n v e s t i g a t e  t h e  

The e f f e c t s  of d r o p l e t  formation from charged nozzles .  29-37. 

experiments  were performed u t i l i z i n g  a p a r a l l e l  f l a t  p l a t e  

e l e c t r o d e  geometry similar t o  t h e  appara tus  schemat ica l ly  d e p i c t e d  

i n  Figure 7. I n  t h e s e  types  of s t u d i e s ,  s i n g l e  charged d r o p l e t s  

are formed a t  the  charged nozzle  and are a c c e l e r a t e d  toward t h e  

bottom e l e c t r o d e  by g r a v i t y  and the e lec t r ic  f i e l d .  The d r o p l e t  

volume, v e l o c i t y ,  and formation rate were determined by high-speed 

photography or video cameras. 

As t h e  s t r e n g t h  of t h e  e lectr ic  f i e l d  is increased ,  t h e  

e l e c t r o s t a t i c  f o r c e  i n c r e a s e s  and t h e  c h a r a c t e r i s t i c  d r o p l e t  s i z e  

decreases  u n t i l  t h e  t r a n s i t i o n  is made from s ingle-drople t  

formation i n t o  t h e  j e t t i n g  regime. I n c r e a s i n g  the f i e l d  s t r e n g t h  

not  only decreases  t h e  d r o p l e t  volume, but  a l s o  i n c r e a s e s  t h e  

d r o p l e t  v e l o c i t y  through the cont inuous phase because of t h e  
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n ~ , , , \  

000 0 0 0  

1 DROP FORMATION 
AT CHARGED 
NOZZLE OR 

PLATE 

RELATIVELY INSULATING 
CONTINUOUS PHASE 

LOWER COLLECTION 
GRID 

FIGURE 7 
Typical  E l e c t r i f i e d  S ingle  Droplet  Formation Apparatus. 

a c c e l e r a t i n g  a f f e c t  of t h e  f i e l d  on t h e  charged d r o p l e t .  

t h e  i n c r e a s i n g  "pull" of t h e  e lectr ic  f i e l d  t h e  d r o p l e t  is deformed 

i n t o  a p r o l a t e  spheroid as i t  de taches  from t h e  nozz le ,  t h u s ,  

g i v i n g  i t  t h e  tendency t o  o s c i l l a t e  a f t e r  detachment. 

Due t o  

To p r e d i c t  t h e  r e s u l t a n t  d r o p l e t  s i z e ,  given t h e  p h y s i c a l  

appara tus  and e lectr ic  f i e l d  s t r e n g t h ,  Takamatsu et. a1 assumed a 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
1
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



SCOTT 

s p h e r i c a l  drop shape was formed i n  an e l e c t r i c  f i e l d  between two 

p a r a l l e l  p l a t e s . 3 4  This  phys ica l  model d id  not p r e d i c t  w e l l  t h e  

e f f e c t s  a t  s i g n i f i c a n t  f i e l d  s t r e n g t h s .  Perona and Byers added 

t h e  e f f e c t s  of t h e  p r o l a t e  sphero ida l  shape t o  o b t a i n  a better 

approximation t o  t h e  e l e c t r o s t a t i c  f o r c e  on t h e  forming d r o p l e t s  

and met with improved r e s u l t s . 2 9  

t h e  e l e c t r i c  f i e l d  by t a k i n g  i n t o  account e l e c t r o d e  geometry, 

Perona and Byers have extended t h e i r  work and are now a b l e  t o  

Using a more rea l i s t ic  model f o r  

s a t i s f a c t o r i l y  p r e d i c t  d r o p l e t  s i z e s  under condi t ions  of high 

d r o p l e t  d e f o r m a t i ~ n . ~ ~  

s t r e n g t h s  g e n e r a l l y  ranged between 0.2 and 2.0 kV/cm, with 

mi l l imeter -s ized  d r o p l e t s  having volumes t h a t  were t y p i c a l l y  2 t o  

10 times smaller than i n  t h e  no-f ie ld  case.  

In t h e  aforementioned s t u d i e s  , f i e l d  

The p o t e n t i a l  b e n e f i t s  of e lectr ic  f i e l d  d r o p l e t  formation 

a r e  s e v e r a l f o l d .  F i r s t ,  t h e  amount of s u r f a c e  area per  u n i t  

volume i n c r e a s e s  over t h e  no-f ie ld  case, thus  al lowing more 

e f f e c t i v e  use of process ing  equipment. Second, t h e  v e l o c i t y  of 

charged d r o p l e t s  through t h e  continuous phase under t h e  i n f l u e n c e  

of t h e  f i e l d  is s i g n i f i c a n t l y  h i g h e r ,  thereby i n c r e a s i n g  mass 

t r a n s f e r  rates on i n d i v i d u a l  d r o p l e t s .  L a s t ,  the presence of 

charge on t h e  d r o p l e t s ,  in p r i n c i p l e ,  should a l low e l e c t r i c  f i e l d s  

t o  be used t o  perform e f f e c t i v e  coalescence and phase s e p a r a t i o n  

o p e r a t i o n s  on t h e  d i s p e r s e d  phase. 

Another approach t o  s u r f a c e  area formation ( l e s s  w e l l  

i n v e s t i g a t e d )  is e lec t r ic - f ie ld- induced  e m u l s i f i c a t i o n .  I f  t h e  

e l e c t r i c  f i e l d  s t r e n g t h  near a nozzle  is increased  p a s t  t h e  p o i n t  
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USE OF ELECTRIC FIELDS I N  SOLVENT EXTRACTION a7 

of s i n g l e  d r o p l e t  formation,  j e t t i n g  occurs  which r e s u l t s  i n  t h e  

formation of an e l e c t r i c a l l y  charged emulsion of micron-sized 

d r o p l e t s .  This  phenomenon has been noted i n  DC, AC, and p u l s i n g  

DC e l e c t r i c  f i e l d s .  24'3942 

of approach a r e  t h e  d r o p l e t - s i z e  c h a r a c t e r i s t i c s  and t h e  energy 

requirements  f o r  c r e a t i o n  of t h e  emulsion. The average d r o p l e t  

s i z e  f o r  t h e s e  types of aqueous-in-organic emulsions is between 2 

and 5 urn with a s s o c i a t e d  d r o p l e t  s i z e  d i s t r i b u t i o n s  i n  t h e  range 

of 1 t o  10 pm. Thus, us ing  t h i s  method, t h e r e  is a p o s s i b l e  200 

t o  500 times i n c r e a s e  i n  t h e  amount of s u r f a c e  area per  u n i t  volume 

of d i spersed  phase compared t o  us ing  mi l l imeter -s ized  d r o p l e t s  

f o r  convent ional  e x t r a c t i o n  processes .  I n  a d d i t i o n ,  t h e  d r o p l e t  

s i z e  d i s t r i b u t i o n  is f a i r l y  narrow i n  t h e  charged emulsion, so 

perhaps hydrodynamic and e lec t r ic  f i e l d  condi t ions  i n  v e s s e l s  

could be "tuned" t o  manipulate t h e  small d r o p l e t s .  

Two i n t e r e s t i n g  a s p e c t s  of t h i s  type 

A f i n a l  word about d r o p l e t  formation should i n c l u d e  a s ta te-  

ment concerning t h e  energy input  requi red  t o  o b t a i n  t h e  s m a l l e r  

d r o p l e t  s i z e s .  I f  t h e  e l e c t r i c - f i e l d - i n d u c e d  d r o p l e t  s i z e  

r e d u c t i o n  r e q u i r e s  a l a r g e  amount of energy,  t h e  i n c r e a s e  i n  

t r a n s p o r t  e f f i c i e n c y  could be o f f s e t  by i n c r e a s e s  i n  energy c o s t s .  

An i n v e s t i g a t i o n  of t h i s  type has  been performed f o r  e lectr ic  

e m u l s i f i c a t i ~ n . ~ ~  

cont inuous ly  emuls i f ied  between a p a r a l l e l  p l a t e  e l e c t r o d e  system 

u t i l i z i n g  a puls ing  DC f i e l d .  Energy i n p u t s  requi red  t o  con- 

I n  t h e  experiments ,  a stream of d r o p l e t s  was 

t i n u o u s l y  form t h e  emulsion were approximated by t r e a t i n g  pulsed- 

f i e l d  behavior  of t h e  emulsion-electrode system as t h e  charg ing  
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88 SCOTT 

and d ischarg ing  of a p a r a l l e l  p l a t e  capac i tor .  Comparison of t h i s  

va lue  t o  d r o p l e t  s i z e  and ag i ta ted- tank  power input  c o r r e l a t i o n s  

revea led  t h a t  t h e  e lectr ic  f i e l d  energy input  was s i g n i f i c a n t l y  

less than 1% of t h a t  requi red  when using mechanical agi-  

t a t i o n .  27*43s44 

correspondingly narrow s i z e  d i s t r i b u t i o n  - condi t ions  e a s i l y  

o b t a i n a b l e  i n  t h e  e lectr ical  system but not  ( i f  a t  a l l  p o s s i b l e )  

i n  t h e  mechanical one. I n  f a c t ,  a g i t a t e d  tank c o r r e l a t i o n s  had 

t o  be s i g n i f i c a n t l y  e x t r a p o l a t e d  t o  o b t a i n  t h i s  a n a l y s i s ;  hence, 

The assumed average d r o p l e t  s i z e  was 5 with a 

t h e  comparison was considered t o  be a conserva t ive  one. 

4.2 Free Droplet-Continuum I n t e r a c t i o n s  

A f t e r  d r o p l e t  formation occurs ,  t h e  d ispersed  phase t o  some 

degree t r a n s l a t e s  with respec t  t o  t h e  cont inuous phase, a l l  t h e  

whi le  a l lowing t r a n s p o r t  of material, u n t i l  coalescence and phase 

s e p a r a t i o n  are c a r r i e d  out ( s e e  Figure 6 ) .  Dependent upon t h e  

e x t e n t  of s e p a r a t i o n  achieved dur ing  t h i s  time as compared t o  t h e  

needs of t h e  p a r t i c u l a r  opera t ion ,  t h e  coalesced phase may either 

be red ispersed  t o  a l low f u r t h e r  mass t r a n s p o r t  t o  occur, thus  re- 

p e a t i n g  t h e  cyc le ,  o r  t h e  process  is te rmina ted ,  with the r e s u l t a n t  

l i q u i d s  being s e n t  t o  o t h e r  opera t ions  f o r  f u r t h e r  processing.  

During t h e  f r e e  droplet-continuum i n t e r a c t i o n  s t a g e  of t h e  process ,  

t h e  r a t e  of mass t r a n s p o r t  is s t r o n g l y  dependent upon t h e  hydro- 

dynamic s ta te  of t h e  system. The c o n t r i b u t i o n  of e l e c t r i c a l l y  

based processes  t o  i n c r e a s i n g  rates o r  enhancing s e p a r a t i o n  is 

g e n e r a l l y  due t o  a l t e r a t i o n  of t h e  v e l o c i t y  p r o f i l e s  w i t h i n  and 

around i n d i v i d u a l  d r o p l e t s .  
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USE OF ELECTRIC FIELDS I N  SOLVENT EXTRACTION 89 

The hydrodynamic s ta te  of t h e  system may vary widely from a 

s t a g n a n t  d r o p l e t  surrounded by a n e a r l y  s tagnant  cont inuous phase 

t o  a d r o p l e t  t h a t  d i s p l a y s  vigorous i n t e r n a l  motion and t r a n s l a t i o n  

w i t h  respec t  t o  the  cont inuous phase. The two primary modes of 

v e l o c i t y  p r o f i l e  a l t e r a t i o n  produced by t h e  aforementioned e l e c t r i c  

f i e l d  methods a r e  increased  r e l a t i v e  v e l o c i t y  between t h e  phases  

and inducement of d r o p l e t  o ~ c i l l a t i o n . ~ ~  

can lead  t o  s i g n i f i c a n t  enhancement i n  o v e r a l l  mass t r a n s f e r  

rates. Increased  d r o p l e t  v e l o c i t y  occurs  as a r e s u l t  of i n t e r -  

a c t i o n  of charged d r o p l e t s  with t h e  imposed e lectr ic  f i e l d  

(see Sec t ion  3). It has been i l l u s t r a t e d  t h a t  t h e  te rmina l  velo- 

E i t h e r  of t h e s e  e f f e c t s  

c i t y  of d r o p l e t s  formed a t  charged nozzles  can e a s i l y  exceed two 

times t h a t  of uncharged d r o p l e t s  of t h e  same s ize .46  Therefore ,  

u s i n g  an e l e c t r i c  f i e l d  f o r  d r o p l e t  formation not on ly  produces 

smaller d r o p l e t s ,  but causes  them t o  move through t h e  cont inuous 

phase a t  a h igher  v e l o c i t y  than t h e  no-f ie ld  case. Hence, t h e  

ra te  of mass t r a n s f e r  is enhanced by t h e  g r e a t e r  amount of i n t e r -  

f a c i a l  area per  u n i t  volume and by t h e  i n c r e a s e  i n  t h e  l o c a l  mass 

t r a n s f e r  c o e f f i c i e n t  provided by t h e  h igher  d r o p l e t  v e l o c i t y .  

O s c i l l a t i o n  of d r o p l e t s  i n  an e l e c t r i c  f i e l d  can be caused by 

e i t h e r  r e l a x a t i o n  of t h e  d r o p l e t  from a n  i n i t i a l  deformation o r  by 

p e r i o d i c  forced deformation which occurs  as a r e s u l t  of t r a n s i e n t  

e lec t r ic  f i e l d s .  As mentioned i n  S e c t i o n  3, d r o p l e t s  formed a t  

charged nozzles  i n  s teady  f i e l d s  tend t o  start  out  as p r o l a t e  

e l l i p s o i d s .  The aspec t  r a t i o  of t h i s  deformation i n c r e a s e s  as t h e  

e lec t r ic  f i e l d  is  increased.  To d i s s i p a t e  t h e  stress imposed by 
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90 SCOTT 

t h e  i n i t i a l  deformation,  t h e  l i q u i d  d r o p l e t  undergoes damped 

o s c i l l a t i o n s  a t  a frequency which is c h a r a c t e r i s t i c  of t h e  p h y s i c a l  

p r o p e r t i e s  of t h e  two l i q u i d s  as i t  is a c c e l e r a t e d  through t h e  

continuous phase. 2 5  

The e f f e c t s  of these  o s c i l l a t i o n s  are twofold: t h e  amount of 

s u r f a c e  a r e a  a v a i l a b l e  f o r  mass t r a n s f e r  is  g r e a t e r ,  and t h e  

v e l o c i t y  p r o f i l e s  w i t h i n  and around t h e  d r o p l e t  are a l t e r e d .  The 

i n c r e a s e  i n  i n t e r f a c i a l  s u r f a c e  area f o r  o s c i l l a t i n g  d r o p l e t s  has  

been t r e a t e d  as t h e  primary mode f o r  t h e  enhancement of mass 

t r a n s f e r  by s e v e r a l   researcher^.^^ s 4 *  

t a k e s  i n t o  account t h e  a c t u a l  v e l o c i t y  p r o f i l e s  involved in t h e  

o s c i l l a t i n g  d r o p l e t  system, and subsequent ly  they  have been shown 

t o  underpredict  t h e  e f f e c t  of o s c i l l a t i o n  upon mass t r a n s f e r .  

Nei ther  of these  approaches 

45,49 

Evident ly ,  t h e  i n c r e a s e  cannot be adequate ly  descr ibed  u n l e s s  

t h e  e f f e c t  of d r o p l e t  o s c i l l a t i o n  upon t h e  a c t u a l  v e l o c i t y  p r o f i l e s  

i s  a l s o  taken i n t o  account. This  hypothes is  is supported by 

o s c i l l a t i n g - c i r c u l a t i n g  d r o p l e t  mass t r a n s f e r  d a t a  f o r  t h e  

d i a s o l u t i o n  of water d r o p l e t s  i n  2-ethyl-1-hexanol ( Z E H p 9  In 

t h i s  s tudy aqueous d r o p l e t s  were suspended i n  upflowing 2EH and 

forced t o  o s c i l l a t e  about t h e  s p h e r i c a l  form by a pulsed DC 

e l e c t r i c  f i e l d  which was p a r a l l e l  t o  t h e  flow f i e l d .  The f r e -  

quency of d r o p l e t  o s c i l l a t i o n  was var ied  from 0 t o  50 Hz, with an 

ampli tude of o s c i l l a t i o n  that  was 1OX of t h e  i n i t i a l  d r o p l e t  

rad ius .  Based on s u r f a c e  a r e a  arguments, t h e  i n c r e a s e  i n  mass 

t r a n s f e r  f o r  t h e  h i g h e s t  o s c i l l a t i o n  rate should have been only a 

matter of s e v e r a l  percent ;  however, t h e  repor ted  enhancement was a 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
1
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



USE OF ELECTRIC FIELDS I N  SOLVENT EXTRACTION 9 1  

40% i n c r e a s e  i n  t h e  rate of mass t r a n s f e r  f o r  an o s c i l l a t i o n  

frequency of 50 Hz. 

The use of q u a n t i t a t i v e  and q u a l i t a t i v e  flow v i s u a l i z a t i o n  

techniques  f o r  t h e  o s c i l l a t i n g - c i r c u l a t i n g  d r o p l e t  system has 

confirmed the  complex n a t u r e  of t h e  problem.23 

shown t h a t  forced o s c i l l a t i o n  of a f u l l y  c i r c u l a t i n g  d r o p l e t  which 

i s  t r a n s l a t i n g  through a cont inuous phase simply imposes a 

secondary flow upon t h e  i n t e r n a l  d r o p l e t  motion. Both t h e  a l t e r e d  

i n t e r n a l  d r o p l e t  and cont inuous phase motion d i s p l a y  smooth, 

cont inuous s t reaml ines .  The v e l o c i t y  p r o f i l e s  were modeled as t h e  

v e c t o r i a l  a d d i t i o n  of low-Reynolds-number c i r c u l a t o r y  Hadamard 

f low and flow due t o  o s c i l l a t i o n s  of an e l l i p s o i d  about t h e  

s p h e r i c a l  form. Numerical s o l u t i o n  of t h e  convect ive-  

d i f f u s i o n  equat ions  d e s c r i b i n g  droplet-continuum mass t r a n s p o r t  

u t i l i z i n g  t h e s e  a l t e r e d  v e l o c i t y  p r o f i l e s  y i e l d s  p r e d i c t i o n s  of 

mass t r a n s p o r t  i n c r e a s e s  on t h e  order  of 29 t o  59% f o r  t h e  

water-2EH system.52 

b e t t e r  agreement with t h e  l i m i t e d  amount of mass t r a n s f e r  da ta .  

This  s tudy  has  

This  type of approach appears  t o  be i n  much 

Furthermore, i t  has been noted t h a t  t h e  rate of hea t  and mass 

t r a n s f e r  i n  o s c i l l a t i n g  d r o p l e t s  is a complex f u n c t i o n  of both t h e  

frequency and amplitude of o s c i l l a t i o n  with t h e  r a t e  of t r a n s f e r  

i n c r e a s i n g  upon augmentation of each of these  parameters .  

To best take  advantage of t h e s e  r e l a t i o n s h i p s ,  one would wish t o  

o p e r a t e  a system i n  which r e l a t i v e l y  small d r o p l e t s  would be 

formed and forced  t o  undergo high-amplitude o s c i l l a t i o n s  as they 

move through t h e  cont inuous phase. 

53-55 
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92 SCOTT 

4.3 Coalescence and Phase Separat ion 

The f i n a l  s t e p  i n  ex t r ac t ion  opera t ions  involves  coalescence 

of the  dispersed phase t o  enable sepa ra t ion  of t he  immiscible 

l i q u i d s  and t o  a l low red ispers ion  or f u r t h e r  processing.  Of the  

t h r e e  s t eps  shown i n  Figure 6 t h i s  is the  l e a s t  understood, 

p a r t i c u l a r l y  when one is tak ing  i n t o  account t he  e f f e c t s  of s teady  

or t r a n s i e n t  e lectr ic  f i e l d s  upon the  coalescence of charged 

drople t s .  Although the  mechanisms involved a r e  not known, seve ra l  

app l i ca t ions  of s teady and t r a n s i e n t  e lectr ic  f i e l d s  have been 
33 made t o  car ry  out phase sepa ra t ion  i n  l iqu id- l iqu id  systems. 

E l e c t r i c a l l y  enhanced s e t t l i n g  has seen l imi t ed  use i n  so lvent  

ex t r ac t ion  f o r  q u i t e  some time. Researchers a t  Lurgi developed a 

mul t i s tage  mixer -se t t le r  which al lows f o r  improved s e t t l e r  

performance through the  use of electric f i e lds .56  

app l i ca t ions  of e l e c t r i c a l  techniques have been noted i n  hydro- 

metallurgy and dehydration of crude o i l  emulsions. 

Addit ional  

57-59 

A q u a l i t a t i v e  approach t o  understanding t h i s  complex phenome- 

non can be obtained by tak ing  i n t o  account s eve ra l  i n t e r a c t i o n s  

t h a t  can occur i n  e l e c t r i f i e d  emulsions. A number of coalescence 

mechanisms based upon e lec t r ic  f i e l d  i n t e r a c t i o n s  have been 

suggested. Hypotheses along these  l i n e s  include chain formation,  

d i e l ec t rophores i s ,  e l ec t rophores i s ,  d ipole  coalescence,  e l ec t ro -  

f i n i n g ,  and random co l l i s ions .60  

d rop le t s  p r i o r  t o  coalescence has been observed by seve ra l  

authors .  61-63 

fo rces  due t o  the  p o t e n t i a l  d i f f e rences  between drops a s  a 

The formation of chains  of 

It is speculated t h a t  the  chains  a re  formed by 
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USE OF ELECTRIC FIELDS I N  SOLVENT EXTRACTION 93 

r e s u l t  of induced charges. Die lec t rophores i s  and e l ec t rophores i s  

are involved with drople t  motion induced by p o l a r i z a t i o n  and 

charge i n t e r a c t i o n s  with the  e lectr ic  f i e l d ,  respec t ive ly .  

I n  both of these  cases ,  t he  net  r e s u l t  is f o r  the  imposed e l e c t r i c  

f i e l d  t o  induce drople t  motion i n  the  continuous phase, thereby 

inc reas ing  the  p robab i l i t y  f o r  droplet-droplet  i n t e rac t ions .  

Dipole coalescence a s  def ined by Waterman occurs as a r e s u l t  of 

d rop le t s  acqui r ing  an induced d ipole  i n  e i t h e r  AC or DC f i e l d s ,  

whi le  e l e c t r o f i n i n g  relies on the  combined e f f e c t s  of e l ec t ro -  

phores i s ,  induced d ipoles ,  and d i f f e r e n t i a l  d rop le t  v e l o c i t i e s  t o  

enhance coalescence. 

64,65 

65 

Another approach involves  expla in ing  enhanced coalescence 

r a t e s  i n  f i e l d s  i n  terms of an inc rease  i n  the  number of random 

c o l l i s i o n s  between d rop le t s  due t o  induced d rop le t  motion between 

e lec t rodes .66  

coalescence based on a random col l i s ion /coa lescence  mechanism; 

however, the  model parameters a r e  not r ead i ly  measured, so 

c o r r e l a t i o n  of experimental da t a  is not e a s i l y  ca r r i ed  out. The 

c o l l i s i o n  frequency approach has a l s o  been inves t iga t ed  by Bailes 

and Larkai." 

which allows s t ra ight forward  c o r r e l a t i o n  of coalescence e f f i c i e n c y  

versus  the  enhanced d rop le t  c o l l i s i o n  r a t e .  I n  t h i s  s tudy the  

enhanced c o l l i s i o n  frequency was determined by t ak ing  i n t o  account 

t h e  add i t iona l  force  imposed on l i q u i d  d rop le t s  by electric 

f i e l d s .  Severa l  da ta  sets obtained using a puls ing  DC f i e l d  were 

examined with t h i s  method. A p lo t  of coalescence e f f i c i e n c y  

This work has proposed a model f o r  e l e c t r o s t a t i c  

The i n t e n t  of t h i s  work was t o  develop an express ion  
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94 SCOTT 

versus  enhanced c o l l i s i o n  frequency conta in ing  a l l  of t h e  d a t a  

sets y ie lded  a s i n g l e ,  smooth curve. Use of t h i s  c o r r e l a t i o n  t o  

e x p l a i n  t h e  behavior i n  s t e a d y  DC f i e l d s  was not s u c c e s s f u l .  

5. EXTRACTION SYSTEM CONCEPTS 

Current ly ,  t h e r e  are no i n d u s t r i a l l y  s i g n i f i c a n t  s o l v e n t  

e x t r a c t i o n  systems t h a t  are c o n t r o l l e d  by u t i l i z i n g  e lectr ic  

f i e l d s .  However, as mentioned i n  t h e  preceding s e c t i o n ,  s e v e r a l  

a p p l i c a t i o n s  of e l e c t r i c - f i e l d  systems t o  enhance emulsion 

coalescence a r e  now i n  opera t ion .  Although not ye t  on t h e  market, 

two genera l  types of e l e c t r i c a l l y  c o n t r o l l e d  e x t r a c t i o n  systems 

have been proposed and t e s t e d  on t h e  l a b o r a t o r y  scale. The f i r s t  

k ind  is based upon formation of mi l l imeter -s ized  d r o p l e t s  at  

charged nozzles  and is designed t o  o p e r a t e  i n  v e s s e l s  resembling 

s i e v e - p l a t e  columns. The second is based on e lectr ic  f i e l d  

emulsification/coalescence phenomena and may r e q u i r e  new equipment 

conf igura t ions .  

Three examples of charged nozzle  devices  have been repor ted  

i n  t h e  l i t e r a t u r e .  45s46s67 

e l e c t r i c a l  e x t r a c t o r  designed by T h ~ r n t o n . ~ ~  

s e n t s  a s i n g l e  s t a g e  i n  a s ieve-p la te  column. The top p l a t e  is at  

a h igher  e l e c t r i c a l  p o t e n t i a l  so as t o  f o r c e  d r o p l e t  formation 

through the  top p l a t e  and accelerate t h e  d r o p l e t s  downward. Mass 

t r a n s f e r  tests on t h i s  device  us ing  t h e  water-benzoic acid- toluene 

F igure  8 is a schematic  diagram of an 

The device  repre-  

system i n d i c a t e d  t h a t  f o r  t h e  same flow condi t ions  t h e  e x t r a c t i o n  

rate could be increased  by a f a c t o r  of 3. The f a c t o r  of 3 was 

obta ined  by comparison of t h e  electric f i e l d  t o  t h e  no-f ie ld  case 
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DISPERSED PHASE 
LIQUID IN 

CONTINUOUS PHASE t f LIQUID OUT 
I 
I 

PERFORATED PLATE 
ELECTRODES 

DISPERSED PHASE 4 LIQUID OUT 

CONTINUOUS 
PHASE 

LIQUID IN 

FIGURE 8 
Electric F i e l d  Driven Solvent Extraction Device. 
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96 SCOTT 

i n  t h i s  p a r t i c u l a r  apparatus. 

performance of e x i s t i n g  i n d u s t r i a l  devices. It was noted t h a t  i f  

t he  continuous phase was "too conductive," s i g n i f i c a n t  cur ren t  

flow could be rea l ized .  Therefore ,  the  bas i c  design was modified 

by Bai les  t o  provide a n i t rogen  gas gap between the  top e l ec t rode  

and the  upper su r face  of the  continuous phase.45 

design is depicted i n  Figure 9 .  Mass t r a n s f e r  tests were c a r r i e d  

out  using the  water-acetone-z-butyl a c e t a t e  system. The reported 

r e s u l t s  were i n  terms of the  Murphree t r a y  e f f i c i ency  f o r  the  

s i n g l e  s tage  device. 

across  the  d is tance  between e lec t rodes  ( inc luding  the  a i r  gap 

and l i qu id  phase), the  t r a y  e f f i c i ency  of the  appara tus  approached 

85%, or  near ly  double t h a t  of the  no-field case. Again, no 

comparison t o  i n d u s t r i a l  devices  was quoted. 

No comparisons were made t o  the  

This second 

Upon imposi t ion of a 50-kV electr ic  f i e l d  

A r e l a t ed  ex t r ac to r  geometry has been suggested which u t i l i z e s  

a ho r i zon ta l  AC- r a t h e r  than v e r t i c a l  DC-electric f i e ld .67  

10 conta ins  a schematic diagram of the  device. The ex t r ac to r  

contains  four  ver t ica l - rod  e lec t rodes .  Two rods opposi te  one 

another  serve as  p o s i t i v e  poles ,  while t he  o the r  p a i r  act a s  nega- 

t i v e  poles. The nonuniform electr ic  f i e l d  causes the  formation of 

r e l a t i v e l y  small d rop le t s  from the  top nozzle and then a i d s  i n  

t r a n s l a t i n g  the  d rop le t s  down the  column i n  the  presence of 

countercurrent  flow of the  continuous phase. Mass t r a n s f e r  tests 

wi th  the  water-acet ic  acid-carbon t e t r a c h l o r i d e  system indica ted  

t h a t  the  f r a c t i o n  of material ex t rac ted  from the  organic  phase 

improved by a f a c t o r  of 2 t o  3.5 over t h e  no-f ie ld  case. 

Figure 
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DISPERSED PHASE 
LIQUID IN NpGAS OUT 

t 

Nz GAS IN-  + 

97 

DISPERSED PHASE 
LIQUID OUT 

FIGURE 9 
Modified Electric Field Driven Extractor. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
5
1
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



98 SCOTT 

DISPERSED PHASE CONTINUOUS PHASE 
LIQUID IN LIQUID OUT 

METAL ROD 
CATHODES 3 

0 

3 

t 
DISPERSED PHASE CONTINUOUS PHASE 

LIQUID OUT LIQUID IN 

' POLYETHYLENE- 
COVERED 
METAL ROD 

ANODES 

FIGURE 10 
Vertical Rod Electrode Extraction Device. 
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Although t h e  charged nozz le  devices  appear t o  provide  improve- 

ment over t h e  corresponding "no-field" cases ,  it is not clear t h a t  

t h e s e  systems represent  s i g n i f  i c a n t  improvements over  t h e  b e s t  

e x i s t i n g  technology. One type of system which c l e a r l y  shows 

promise f o r  enhanced o p e r a t i o n s  is based upon t h e  s imultaneous 

emulsification/coalescence phenomena which can occur  i n  t r a n s i e n t  

e lec t r ic  f i e l d s .  41D42 

i l l u s t r a t e d  i n  Figure 11. During o p e r a t i o n ,  t h e  electric f i e l d  is 

used t o  create a high-surface-area emulsion, t o  hold  t h e  emulsion 

in place  a g a i n s t  upward f low of t h e  cont inuous phase,  and t o  induce 

coalescence.  Coalescence of t h e  emulsion occurs  a t  a p o i n t  below 

t h e  area of d r o p l e t  r u p t u r e ,  but s t i l l  w i t h i n  t h e  e l e c t r i c  f i e l d .  

The r e s u l t i n g  l a r g e  d r o p l e t s  f a l l  through t h e  l i g h t e r  organic  phase 

and form a s e p a r a t e ,  aqueous phase i n  the bottom s e c t i o n  of t h e  

v e s s e l .  During e m u l s i f i c a t i o n ,  t h e  cont inuous phase e n t e r s  near  

the bottom of t h e  v e s s e l ,  flows upward, and is withdrawn a t  t h e  

top  of t h e  v e s s e l .  The ( r e l a t i v e l y )  conduct ing and s l i g h t l y  

charged emulsion remains i n  t h e  v i c i n i t y  of t h e  e lectr ic  f i e l d  

around and between t h e  e l e c t r o d e s  and is t h e r e f o r e  s e p a r a t e d  from 

t h e  upflowing organic  phase. Thereby, t h e  system achieves  d i s p e r -  

s i o n  t o  form mass t r a n s f e r  s u r f a c e  area, coa lescence ,  and phase 

s e p a r a t i o n  i n  a s i n g l e  v e s s e l  u t i l i z i n g  a s i n g l e  electric f i e l d .  

The emulsion behaves as a s e p a r a t e ,  f l u i d i z e d  phase; hence, t h e  

device  has been named t h e  emulsion-phase c o n t a c t o r  (EPC). Bench- 

mark mass t r a n s f e r  tests f o r  t h i s  device  have been c a r r i e d  out  

w i t h  t h e  water-acetic ac id-methyl  i s o b u t y l  ketone system. 

A schematic  diagram of t h i s  device  is 

Reeul te  
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46 

k l 0 . 4  cm 4 - ORGANIC OUT 

---- _ - - - - -  -------- 
REGION 1 
ORGANIC 

DISENGAGEMENT _-- ------ 

T ELECTRODES 
REGION 2 

EMULSIFICATION 
AND 

COALESCENCE 
S 

m 

--------- 
AQUEOUS OUT 

, -9-1 
REGION 3 

AOUEOUS 
DISENGAGEMENT 

FIGURE 11 
The Emulsion-Phase Contactor. 

were reported i n  terms of the  number of t h e o r e t i c a l  t r a n s f e r  s t a g e s  

per  cm of emulsion height. The EPC with 1.7 etagee pe r  cm ( 6  

s t a g e s  i n  3.5 cm) outperformed laboratory-scale  vers ions  of t he  

York Scheibel  (0.1 stages/cm) and Podbielniak (0.17 etages/cm) 

contac tore  by f a c t o r s  of 17 and 10, respec t ive ly .  I n  l i g h t  of 

t hese  promising r e s u l t s ,  t he  p o t e n t i a l  f o r  i n d u s t r i a l  app l i ca t ions  
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appears  t o  be p r e s e n t ;  however, f u r t h e r  exper imenta t ion  needs to  

be c a r r i e d  out  i n  order  t o  determine throughput c a p a b i l i t i e s  and 

equipment geometry. 

6 .  PROSPECTS FOR POSSIBLE USE AND FURTHER RESEARCH 

Although a minimal impact has  been f e l t  t o  d a t e  i n  t h e  chemi- 

ca l  process ing  i n d u s t r i e s ,  it s t i l l  is p o s s i b l e  t h a t  e l e c t r i c a l l y  

c o n t r o l l e d  s o l v e n t  e x t r a c t i o n  systems w i l l  provide s i g n i f i c a n t  

c o n t r i b u t i o n s  t o  s e p a r a t i o n s  processing.  These types  of techniques  

are l i m i t e d  t o  f l u i d s  with a p p r o p r i a t e  e lectr ical  p r o p e r t i e s ,  b u t ,  

a s i g n i f i c a n t  p o r t i o n  of t h e  f l u i d  p a i r s  u t i l i z e d  i n  i n d u s t r y  

today meet t h e s e  requirements  and could p o t e n t i a l l y  b e n e f i t  from 

such e lectr ic  f i e l d  e f f e c t s  i f  t h e  process  can be opera ted  i n  the 

"insulating-phase-continuous mode." To assess t h e  u t i l i t y  of 

e lectrohydrodynamic e f f e c t s  f o r  e x t r a c t i o n  o p e r a t i o n s ,  f u t u r e  

r e s e a r c h  should focus on s e v e r a l  important  areas: d r o p l e t  

format ion/d ispers ion  phenomena, coalescence of e l e c t r i f i e d  emul- 

sions,  and t h e  p o s s i b i l i t y  of i n t e r a c t i o n s  of e l e c t r i c - f  i e l d -  

induced charge e f f e c t s  wi th  p h y s i c a l  and chemical charge e f f e c t s .  

It is obvious from t h e  ear l ier  d i s c u s s i o n  of d r o p l e t  format ion  

t h a t  a h e a l t h y  research  t h r u s t  e x i s t s  on t h e  formation of macro- 

s c o p i c  (mi l l imeter -s ized)  d r o p l e t s  from nozzles  and o r i f  ices. The 

t rea tment  t o  d a t e  has been l a r g e l y  empir ica l .  Of ten ,  i n  l i e u  of 

proper  f i r s t  p r i n c i p l e s  arguments, a u t h o r s  have r e s o r t e d  t o  

i n d e f e n s i b l e  s p e c u l a t i o n  involv ing  complex e lectr ic  f i e l d  and 

i n t e r f a c i a l  t e n s i o n  e f f e c t s  t o  e x p l a i n  d e v i a t i o n s  from simple 

models. This  is an area which deserves  f u r t h e r  ref inement  i n  
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102 SCOTT 

order  t o  take advantage of state-of-the-art hydrodynamical 

numerical analyses so t ha t  one can ca l cu la t e  r e su l t an t  drople t  

s i z e s  and ve loc i ty  p r o f i l e s  involved i n  e l e c t r i f i e d  drople t  

formation. It is evident t h a t  a s i g n i f i c a n t  f r a c t i o n  of mass 

t r a n s f e r  i n  ex t r ac t ion  systems occurs during drople t  formation; 

hence, i t  is very important t h a t  f u t u r e  s tud ie s  address the  

ca l cu la t ion  of formation hydrodynamics i n  a very fundamental 

fash ion  and then use these  r e s u l t s  t o  i n f e r  e f f e c t s  upon the  r a t e  

of mass t ransfer .  

Formation of micron-sized emulsions v i a  e l e c t r i c  f i e l d  

d ispers ion  of material  from a nozzle or of f r e e  d rop le t s  repre- 

s e n t s  an a rea  of grea t  promise f o r  vas t ly  increas ing  the  

performance of ex t r ac t ion  devices. The primary ques t ion  involved 

i n  developing t h i s  approach is one of con t ro l l i ng  the  microscopic 

d rop le t s  a f t e r  formation. In curren t  l iqu id- l iqu id  systems, t he  

formation of such drople t s  is avoided because of p o t e n t i a l  

entrainment problems i n  the  continuous phase. The e l e c t r i c  f i e l d  

approach y i e lds  some hope f o r  cont ro l  a s  the  d rop le t s  t h a t  a r e  

formed w i l l  be ( a t  l e a s t )  s l i g h t l y  charged and therefore  subjec t  

t o  in t e rac t ion  with e l e c t r i c  f i e l d s .  The numerical simulation of 

drople t  f i s s ion ing  i n  high i n t e n s i t y  e l e c t r i c  f i e l d s  is a subjec t  

on the  foref ront  of electrohydrodynamic research. Thus, i n i t i a l  

i nves t iga t ion  i n t o  t h i s  a rea  may tend t o  be approached from a 

p r a c t i c a l  point of view u n t i l  more general  treatments can be 

formalized. 

An important i s sue  r e l a t ed  t o  emulsion formation is 

e l e c t r i f i e d  emulsion coalescence. The simultaneous emuls i f ica t ion /  
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coalescence phenomenon observed in preliminary experiments seems 

t o  ind ica t e  t h a t  e l e c t r i c  f i e l d s  can be used t o  cont ro l  emulsions; 

however, the design c r i t e r i a  f o r  e l e& rode conf igura t ion  and 

vesse l  geometry which would allow i n d u s t r i a l  app l i ca t ion  are s t i l l  

t o  be determined. 

fundamental s tud ie s  need t o  be ca r r i ed  out t o  understand t h e  

coalescence mechanism. Coalescence of e l e c t r i f i e d  l i qu id  d rop le t s  

i n  a i r  (cloud physics) is an area  of ac t ive  research. 

surveying the  l i t e r a t u r e  one f inds  t h a t  reasonable treatments of 

e l e c t r i f i e d  l iqu id- l iqu id  in t e rac t ions  do not e x i s t .  The com- 

p l i c a t i n g  f a c t o r  of the  l iqu id- l iqu id  system is t he  e f f e c t  of 

continuous phase v i scos i ty  upon momentum t r a n s f e r  and the  r e s u l t a n t  

e f f e c t  upon coupling of charge, momentum, i n t e r f a c i a l ,  and viscous 

t r a n s f e r  processes which allow drople t  c o l l i s i o n s  t o  r e s u l t  in 

coalescence events. A t  t h i s  point in time, about a l l  t h a t  can be 

s a i d  is t ha t  t r ans i en t  e l e c t r i c  f i e l d s  appear t o  be more e f f i c i e n t  

than  steady f i e l d s  f o r  emulsion coalescence; hence, t h i s  a rea  

harbors  a grea t  po ten t i a l  f o r  f r u i t f u l  research. 

Apart from designing a usefu l  ex t r ac t ion  system, 

In c o n t r a s t ,  

Other poss ib le  a reas  f o r  consideration could involve 

inves t iga t ion  of the  i n t e r a c t i o n s  of e lec t r ic - f ie ld- induced  

charges with physical and chemical phenomena. For example, 

adsorption of charged, surface-active mater ia l  onto the  drople t -  

continuum i n t e r f a c e  could provide the  means f o r  con t ro l l i ng  or 

a l t e r i n g  behavior in e l e c t r i c  f i e l d s .  

s i g n i f i c a n t  d i f fe rences  in t r anspor t  r a t e s  involving reac t ions  

wi th  ions could be r ea l i zed  because of e f f e c t s  caused by drople t  

It is a l s o  conceivable t h a t  
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charge and high i n t e n s i t y  e l e c t r i c  f i e l d s .  

these  type of in t e rac t ions  have not been inves t iga ted  t o  any 

s i g n i f i c a n t  extent f o r  ex t r ac t ion  systems. 

A t  the present  t i m e ,  

I n  summary, although S ign i f i can t  appl ica t ions  do not cu r ren t ly  

e x i s t  f o r  the  use of high-intensity e l e c t r i c  f i e l d s  i n  so lvent  

ex t r ac t ion ,  severa l  prototype systems a re  candidates f o r  f u r t h e r  

t e s t i n g  and severa l  a reas  of po ten t i a l ly  bene f i c i a l  research 

should be inves t iga ted  before the  concept is abandoned. 
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8. NOMENCLATURE 

e l e c t r i c  displacement vector 

e l e c t r i c  displacement of phase i a t  the  i n t e r f a c e  

e l e c t r i c  f i e l d  vector 

electric f i e l d  vector of phase i a t  t he  i n t e r f a c e  

g rav i t a t ion  force  per u n i t  mass 

l o c a l  mean curvature 

cur ren t  dens i ty  vector 

sur face  cur ren t  dens i ty  vector 

u n i t  normal vector 

po la r i za t ion  vector 
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Po - 
p s  - 
T -  

T -  - - 
v -  - 
Y -  

E -  

€0 - 
n -  

0 -  

pE - 
pE,O - 
a -  

a -  E 

7 -  

v -  

vs - 

zero  f i e l d  pressure  

elect r o s t r i c t i v e  pressure  

temperature  

e lectr ic  shear  stress 

stress tensor  

v e l o c i t y  vec tor  

conduct iv i ty  

p e r m i t t i v i t y  

p e r m i t t i v i t y  of f r e e  space 

l i q u i d  v i s c o s i t y  

l i q u i d  dens i ty  

volume charge d e n s i t y  

i n i t i a l  volume charge d e n s i t y  

i n t e r f a c i a l  t e n s i o n  

s u r f a c e  charge d e n s i t y  

e l e c t r i c a l  r e l a x a t i o n  time 

nabla  

s u r f a c e  nabla 
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